
© 2018 MariaDB Foundation
* * 

Let's talk Database Optimizers
Vicențiu Ciorbaru

Software Engineer @ MariaDB Foundation
vicentiu@mariadb.org

mailto:vicentiu@mariadb.org


© 2018 MariaDB Foundation

Goal of a query optimizer

■ Produce a query plan that executes your query in 
the fastest time possible.

■ Optimizer has many tools at its disposal:
○ It can choose to pre-read tables
○ Cache results (such as uncorrelated subqueries)
○ Use indexes to look up values
○ Use indexes to access data in-order and avoid 

sorting
○ Rewrite a query (more on this later)
○ And more...

■ Number of possible plans grows exponentially with
# tables



© 2018 MariaDB Foundation

Goal of a query optimizer

■ Not enough time to try out every possible plan

■ In a "perfect world" any query should be performing 
as fast as possible.

■ Many queries do!

■ But sometimes, the query optimizer doesn't have all 
the information.  (missing indexes, inaccurate 
statistics, etc.)

■ Optimizers are constantly evolving!



© 2018 MariaDB Foundation

Background about optimizations

■ A derived table is a table in the FROM clause, 
defined as a subquery.

SELECT * FROM (SELECT a from t1) der_t1;



© 2018 MariaDB Foundation

VIP Customers and their orders

select *
from vip_customers,
     (select *
      from orders
      where order_date
              between '2017-10-01' and '2017-10-31') as
     OCT_ORDERS
where OCT_ORDERS.amount > 1000000 and
      OCT_ORDERS.customer_id = vip_customers.customer_id;



© 2018 MariaDB Foundation

Naive Execution
select *
from vip_customers,
     (select *
      from orders
      where order_date
              between '2017-10-01' and '2017-10-31') as
     OCT_ORDERS
where OCT_ORDERS.amount > 1000000 and
      OCT_ORDERS.customer_id = vip_customers.customer_id;

orders

OCT_ORDERS

DATE 
FILTER

amount > 1000000 JOIN vip_customers

RESULT



© 2018 MariaDB Foundation

Derived Table Merge

select *
from
  vip_customers vc,
  (select *
   from orders
   where
    order_date between
     '2017-10-01' and '2017-10-31'
  ) as OCT_ORDERS
where
  OCT_ORDERS.amount > 1M and
  OCT_ORDERS.customer_id =
          vc.customer_id;

select *
from
  vip_customers vc,
  orders
where
  OCT_ORDERS.amount > 1M and
  OCT_ORDERS.customer_id =
          vc.customer_id and
  order_date between
   '2017-10-01' and '2017-10-31';



© 2018 MariaDB Foundation

Explain shows the table being merged

select *
from vip_customers,
     (select *
      from orders
      where order_date
              between '2017-10-01' and '2017-10-31') as
     OCT_ORDERS
where OCT_ORDERS.amount > 1000000 and
      OCT_ORDERS.customer_id = vip_customers.customer_id;

16649 rows in set (7.64 sec)

+----+-------------+---------------+------+..+---------+-------------+
|id  | select_type | table         | type |..| rows    | Extra       |
+----+-------------+---------------+------+..+---------+-------------+
|  1 | SIMPLE      | vip_customers | ALL  |..|     101 |             |
|  1 | SIMPLE      | orders        | ALL  |..| 1000000 | Using where;|
+----+-------------+---------------+------+..+---------+-------------+



© 2018 MariaDB Foundation

Execution after merge
select *
from
  vip_customers vc,
  orders
where
  orders.amount > 1M and
  orders.customer_id = vc.customer_id and
  order_date between '2017-10-01' and '2017-10-31';

orders
OCT_ORDERS

amount > 1000000 JOIN vip_customers

RESULT



© 2018 MariaDB Foundation

Execution after merge
select *
from
  vip_customers vc,
  orders
where
  orders.amount > 1M and
  orders.customer_id = vc.customer_id and
  order_date between '2017-10-01' and '2017-10-31';

orders
OCT_ORDERS

amount > 1000000 JOIN vip_customers

RESULT

Merging is good!

It simplifies the query.



© 2018 MariaDB Foundation

Execution after merge
select *
from
  vip_customers vc,
  orders
where
  orders.amount > 1M and
  orders.customer_id = vc.customer_id and
  order_date between '2017-10-01' and '2017-10-31';

orders
OCT_ORDERS

amount > 1000000 JOIN vip_customers

RESULT

Works in all stable MySQL 
and MariaDB versions



© 2018 MariaDB Foundation

Execution after merge
select *
from
  vip_customers vc,
  orders
where
  orders.amount > 1M and
  orders.customer_id = vc.customer_id and
  order_date between '2017-10-01' and '2017-10-31';

orders
OCT_ORDERS

amount > 1000000 JOIN vip_customers

RESULT

Can not be used when 
aggregation is present :(



© 2018 MariaDB Foundation

Condition pushdown

create view OCT_TOTALS as
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date between '2017-10-01' and '2017-10-31'
group by
   customer_id

select *
from OCT_TOTALS
where customer_id=1



© 2018 MariaDB Foundation

Condition pushdown

create view OCT_TOTALS as
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date between '2017-10-01' and '2017-10-31'
group by
   customer_id

select *
from OCT_TOTALS
where customer_id=1

There are a lot of customers and 
we only want a total for one.



© 2018 MariaDB Foundation

Condition pushdown

create view OCT_TOTALS as
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date between '2017-10-01' and '2017-10-31'
group by
   customer_id

select *
from OCT_TOTALS
where customer_id=1

We can push the condition to the 
where clause!



© 2018 MariaDB Foundation

Condition pushdown

create view OCT_TOTALS as
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date between '2017-10-01' and '2017-10-31'
group by
   customer_id

select *
from OCT_TOTALS
where customer_id=1

orders

SUM

customer_id = 1



© 2018 MariaDB Foundation

Condition pushdown

create view OCT_TOTALS as
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date between '2017-10-01' and '2017-10-31'
group by
   customer_id

select *
from OCT_TOTALS
where customer_id=1

All this is available in MariaDB 10.2



© 2018 MariaDB Foundation

Condition pushdown

create view OCT_TOTALS as
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date between '2017-10-01' and '2017-10-31'
group by
   customer_id

select *
from OCT_TOTALS
where customer_id=1

This tactic works with window 
functions too!



© 2018 MariaDB Foundation

create view top_three_orders as
select * from (
 select customer_id, amount,
        rank() over (partition by customer_id
                     order by amount desc) as order_rank 
from orders) as ordered_orders
where order_rank < 3

Condition pushdown through Partition By



© 2018 MariaDB Foundation

create view top_three_orders as
select * from (
 select customer_id, amount,
        rank() over (partition by customer_id
                     order by amount desc) as order_rank 
from orders) as ordered_orders
where order_rank < 3

+-------------+--------+------------+
| customer_id | amount | order_rank |
+-------------+--------+------------+
|           1 |  10000 |          1 |
|           1 |   9500 |          2 |
|           1 |    400 |          3 |
|           2 |   3200 |          1 |
|           2 |   1000 |          2 |
|           2 |    400 |          3 |
.....................................

Condition pushdown through Partition By



© 2018 MariaDB Foundation

create view top_three_orders as
select * from (
 select customer_id, amount,
        rank() over (partition by customer_id
                     order by amount desc) as order_rank 
from orders) as ordered_orders
where order_rank < 3

+-------------+--------+------------+
| customer_id | amount | order_rank |
+-------------+--------+------------+
|           1 |  10000 |          1 |
|           1 |   9500 |          2 |
|           1 |    400 |          3 |
|           2 |   3200 |          1 |
|           2 |   1000 |          2 |
|           2 |    400 |          3 |
.....................................

select * from top_three_orders where customer_id=1

Condition pushdown through Partition By



© 2018 MariaDB Foundation

create view top_three_orders as
select * from (
 select customer_id, amount,
        rank() over (partition by customer_id
                     order by amount desc) as order_rank 
from orders) as ordered_orders
where order_rank < 3

+-------------+--------+------------+
| customer_id | amount | order_rank |
+-------------+--------+------------+
|           1 |  10000 |          1 |
|           1 |   9500 |          2 |
|           1 |    400 |          3 |
|           2 |   3200 |          1 |
|           2 |   1000 |          2 |
|           2 |    400 |          3 |
.....................................

select * from top_three_orders where customer_id=1

Condition pushdown through PARTITION 
BY



© 2018 MariaDB Foundation

Condition pushdown through PARTITION BY

MariaDB 10.2, MySQL 8.0

● Compute top_three_orders for all 
customers

● Select rows with customer_id=1

MariaDB 10.3
(and e.g. PostgreSQL)

● Only compute top_three_orders for 
customer_id=1

● This can be much faster!
● Can make use of index(customer_id)

MariaDB 10.2, MySQL 8.0, MariaDB 10.3 Comparison



© 2018 MariaDB Foundation

create view OCT_TOTALS as 
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where
   order_date BETWEEN '2017-10-01' and '2017-10-31'
group by customer_id

select *
from customers, OCT_TOTALS
where customers.customer_id=OCT_TOTALS.customer_id and
      customers.customer_name IN ('John', 'Bob')

Split grouping for derived



© 2018 MariaDB Foundation

Split grouping for derived

customers

John

Bob
JOIN

orders

Bob

Customer X

SUM

John

OCT_TOTALS

Bob

Customer X

John

create view OCT_TOTALS as 
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date BETWEEN '2017-10-01' and '2017-10-31'
group by customer_id

select *
from customers, OCT_TOTALS
where
 customers.customer_id=OCT_TOTALS.customer_id and
 customers.customer_name IN ('John', 'Bob')



© 2018 MariaDB Foundation

Split grouping for derived

customers

John

Bob
JOIN

orders

Bob

Customer X

SUM

John

OCT_TOTALS

Bob

Customer X

John

create view OCT_TOTALS as 
select customer_id, SUM(amount) as TOTAL_AMT
from orders
where order_date BETWEEN '2017-10-01' and '2017-10-31'
group by customer_id

select *
from customers, OCT_TOTALS
where
 customers.customer_id=OCT_TOTALS.customer_id and
 customers.customer_name IN ('John', 'Bob')

Customer X
total

not needed!



© 2018 MariaDB Foundation

Split grouping execution

customers

John

Bob

orders

Bob

John

SUM

SUM

Figure out which orders we need to aggregate first!

Aggregate each group individually.



© 2018 MariaDB Foundation

Split grouping execution requirements

■ Can be used when doing join from customer to 
orders

■ Must have equalities for GROUP BY columns:
OCT_TOTALS.customer_id=customer.customer_id
○ This allows to select one group

■ The underlying table (orders) must have an index on 
the GROUP BY column (customer_id)
○ This allows to use ref access



© 2018 MariaDB Foundation

Conclusions

MySQL 5.7 MySQL 8.0 MariaDB 
10.1

MariaDB 
10.2

MariaDB 
10.3

Derived 
Table / View 

Merge
✔ ✔ ✔ ✔ ✔

Condition 
Pushdown 

through 
Group BY

✕ ✕ ✕ ✔ ✔

Window 
Functions ✕ ✔ ✕ ✔ ✔

Condition 
Pushdown 

through 
Partition BY

✕ ✕ ✕ ✕ ✔

Split Table 
Grouping ✕ ✕ ✕ ✕ ✔

Not comprehensive comparison, only optimizations discussed in this talk!



© 2018 MariaDB Foundation

Conclusions

■ MariaDB 10.2: Condition pushdown for derived tables 
optimization
○ Push a condition into derived table
○ Used when derived table cannot be merged 
○ Biggest effect is for subqueries with GROUP BY

■ MariaDB 10.3: Condition Pushdown through Window 
functions' partition by

■ MariaDB 10.3: Split grouping for derived optimization
○ When doing a join, can’t do condition pushdown
○ So, split grouping derived is used.
○ It allows to only examine GROUP BY groups that 

match other tables. It needs index on grouped 
columns

○ Work in progress (optimization process is very basic 
ATM)



© 2016 MariaDB Foundation

Thank You!

Contact me at: 
vicentiu@mariadb.org 
vicentiu@ciorbaru.io

Blog:
mariadb.org/blog

mailto:vicentiu@mariadb.org
mailto:vicentiu@ciorbaru.io

