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The goals

1. Want to evaluate/measure the query optimizer
2. Hard to do, optimizer should handle

- Different query patterns
— Different data distributions, etc
3. How does one do it anyway?

- Look at benchmarks

= Or “optimizer part” of the benchmarks



Benchmarks

1. sysbench
- Popular

— Does only basic queries, few query patterns

2. DBT-3 (aka TPC-H)
— 6 tables, 22 analytic queries
— Was used to see some optimizer problems
— Limited:
* Uniform data distribution, uncorrelated columns



TPC-DS benchmark

® (Obsoletes DBT-3 benchmark

® Richer dataset
- 25 Tables, 99 queries

— Non-uniform data distributions
® Uses advanced SQL features
- 32 queries use CTE
— 27 queries use Window Functions
- etc

® Could not really run it until MariaDB 10.2 (or MySQL 8)



MariaDB still can’t run all of TPC-DS

* 2 Queries: FULL OUTER JOIN
* 10 Queries: ROLLUP + ORDER BY problem (MDEV-17807)

select
group by
a,b,c with rollup

order by
a,b,c

ERROR 1221 (HYO0O0): Incorrect usage of CUBE/ROLLUP
and ORDER BY

* ~20 more queries have fixable problems

— “Every derived table must have an alias”, etc



Oracle MySQL and TPC-DS

ROLLUP + ORDER BY is supported since 8.0.12
Doesn’t support FULL OUTER JOIN (2 queries)
Doesn’'t support EXCEPT (1 query)

Doesn’'t support INTERSECT (3 queries)



Running queries from TPC-DS

® Data generator creates CSV files
— Adjust #define for MySQL/MariaDB
® Query generator produces “streams” from templates
— Aset of QueryNNN.tpl files
— Astream is a text file with one instance of each of the 99 queries
— One can add hooks at query start/end
® Queries have a few typos

® There’s no tool to run queries/measure time

— Note that the read queries are a subset of benchmark (TpCX$)



Getting it to run

® A collection of scripts at
https://github.com/spetrunia/tpcds-run-tool

® The goal is a fully-automated run
— MariaDB, MySQL, PostgreSQL

® Because we need to play with settings/options



Test runs done

® The dataset
- Scale=1
- 1.2 GB CSV files
- 6 GB when loaded
® The Queries
- 10..20 “Streams”
® Tuning
— Innodb_buffer _pool=8G (50% RAM)
—shared buffers = 4G (25% RAM)



Test results



Test results



Test results

® ... abitinconclusive — query times varied across my runs (?)
® Time to run one stream = 20 min — 2 hours

® Searching for the source of randomness

- Started to work on full automation

* (did I run ANALYZE? Did | have correct with my.cnf
parameters?)

— Started to look at rngseed in dataset/query generator

JMcriqDB



MariaDB/MySQL



MariaDB 10.2, 10.4, MySQL 8

® Scale=1, 6.1 GB data, 8G buffer pool
® rngseed=1234 for both
® Benchmark takes ~20 min

® Query times are very non-uniform
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Query#72 dominates
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Without Query #72
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PostgreSQL 11



PostgreSQL 11

There was a “fast” run

Showing results from the last
two runs (both where “slow”)

rngseed=5678 for both
— 121 min

rngseed=1234 (data),
rngseed=4321 (query)
— 145..154 min.

query time, ms

PostgreSQL 11, different rngseed

(analyze has been run for both)
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Heaviest queries in the run

| query4.tpl

| queryll.tpl
| queryl.tpl

| query74.tpl
| query47.tpl
| query57.tpl
| query81.tpl
| query6.tpl

| query30.tpl
| query39.tpl
| query95.tpl

Execution time varies

Is this a query optimizer issue?

3,628,830
2,004,392
87,981
693,784
624,717
116,570
22,089
27,896
11,214
10, 803
16, 418

Or different constants in a skewed dataset?

3,578,944
2,013,597
1,947, 624
641,696
539, 941
112,472
47, 366
27,009
11,171
10, 702
10, 065
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Do we need a “representative
collection of datasets”?

Check N datasets?
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Compare most heavy gueries

MariaDB PostgreSQL

query_name | QueryTime_ms | | query_name | PG1l1l-seed5678 | PG1l1l-seed1234 | X
------------- S T T T e .
query72.tpl | 678,321 | | query4.tpl | 3,628,830 | 3,578,944 | 1.0139
query23.tpl | 80,025 | | queryll.tpl | 2,004,392 | 2,013,597 | 0.9954
query2.tpl | 65,156 | | queryl.tpl | 87,981 | 1,947,624 | 0.0452
query39.tpl | 63,761 | | query74.tpl | 693,784 | 641,696 | 1.0812
query78.tpl | 63,473 | | query47.tpl | 624,717 | 539,941 | 1.1570
query4.tpl | 27,549 | | query57.tpl | 116,570 | 112,472 | 1.0364
query31.tpl | 24,344 | | query81.tpl | 22,089 | 47,366 | 0.4663
query47.tpl | 19,156 | | query6.tpl | 27,896 | 27,009 | 1.0328
queryll.tpl | 17,484 | | query30.tpl | 11,214 | 11,171 | 1.0038
query74.tpl | 16,571 | | query39.tpl | 10,803 | 10,702 | 1.0094
guery21.tpl | 16,212 | | query95.tpl | 16,418 | 10,065 | 1.6312
guery59.tpl | 10,522 | )

® Some queries are present in both lists, but some are only in one.

® Not clear



Observations about the benchmark

® rngseed on the dataset matters ALOT
- What is a representative set of rngseed values?
® rngseed on query streams — much less
® Hardware?
® Queries are not equal
— Heavy vs lightweight queries

- Is SUM(query_time) an adequate metric?

* Wont see that a fast query got 10x slower



Other observations

Both DBT-3 and TPC-DS workloads are relevant for the optimizer
— Condition selectivities

—  Semi-join optimizations

But don’t match the optimizer issues we see
- ORDER BY ... LIMIT optimization

— Long IN-list



Extra: parallel g



Extra — PostgreSQL 11, parallel query?

® Trying on a run with both rngseed=5678:

e Parallel settings
max_parallel_workers_per_gather=8 (the default was 2)

dynamic_shared_memory_type=posix
show max_worker_processes= 8

® Results
- Only saw one core to be occupied

— The run still took 121 min, didin’t see any speedup



Try a parallel query

select
sum(inv_quantity_on_hand*i_current_price)
from
inventory, item
where
i_item_sk=inv_item_sk;

® max_parallel workers per gather=0

QUERY PLAN
Aggregate (cost=301495.25..301495.26 rows=1 width=32)
-> Hash Join (cost=1635.00..213408.54 rows=11744894 width=10)
Hash Cond: (inventory.inv_item_sk = item.i_item_sk)
-> Seq Scan on inventory (cost=0.00..180935.94 rows=11744894 width=8)
-> Hash (cost=1410.00..1410.00 rows=18000 width=10)
-> Seqg Scan on item (cost=0.00..1410.00 rows=18000 width=10)



Try a parallel query

select
sum(inv_quantity_on_hand*i_current_price)
from
inventory, item
where
i_item_sk=inv_item_sk;

® max_parallel workers per gather=8
QUERY PLAN

Finalize Aggregate (cost=125048.98..125048.99 rows=1 width=32)
-> Gather (cost=125048.55..125048.96 rows=4 width=32)
Workers Planned: 4
-> Partial Aggregate (cost=124048.55..124048.56 rows=1 width=32)
-> Parallel Hash Join (cost=1468.23..102026.87 rows=2936224 width=10)
Hash Cond: (inventory.inv_item_sk = item.i_item_sk)
-> Parallel Seq Scan on inventory (cost=0.00..92849.24 rows=2936224 width=8)
-> Parallel Hash (cost=1335.88..1335.88 rows=10588 width=10)
-> Parallel Seq Scan on item (cost=0.00..1335.88 rows=10588 width=10)

JMcriaDB



Try a parallel query

select
sum(inv_quantity_on_hand*i_current_price)
from
inventory, item
where
i_item_sk=inv_item_sk;

® Results
- max_parallel_workers_per_gather=8: 1.0 sec

- max_parallel_workers_per_gather=0: 3.8 sec

® Didn’'t see anything like that in TPC-DS benchmark



Thanks!
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