e

*

e " -

~ Lessons for the optimizer

X -
- P -
- - . - .
- i -

P

o

Sergei Petrunia 2019 MariaDB Developers Uncohferéhéé_é;;_j b
Query Optimizer developer ' ~ New York

MariaDB Corporation _ W ._
JMariqDB-'_* Nl

The goals

1. Want to evaluate/measure the query optimizer
2. Hard to do, optimizer should handle

- Different query patterns
— Different data distributions, etc
3. How does one do it anyway?

- Look at benchmarks

= Or “optimizer part” of the benchmarks

Benchmarks

1. sysbench
- Popular

— Does only basic queries, few query patterns

2. DBT-3 (aka TPC-H)
— 6 tables, 22 analytic queries
— Was used to see some optimizer problems
— Limited:
* Uniform data distribution, uncorrelated columns

TPC-DS benchmark

® (Obsoletes DBT-3 benchmark

® Richer dataset
- 25 Tables, 99 queries

— Non-uniform data distributions
® Uses advanced SQL features
- 32 queries use CTE
— 27 queries use Window Functions
- etc

® Could not really run it until MariaDB 10.2 (or MySQL 8)

MariaDB still can’t run all of TPC-DS

* 2 Queries: FULL OUTER JOIN
* 10 Queries: ROLLUP + ORDER BY problem (MDEV-17807)

select
group by
a,b,c with rollup

order by
a,b,c

ERROR 1221 (HYO0O0): Incorrect usage of CUBE/ROLLUP
and ORDER BY

* ~20 more queries have fixable problems

— “Every derived table must have an alias”, etc

Oracle MySQL and TPC-DS

ROLLUP + ORDER BY is supported since 8.0.12
Doesn’t support FULL OUTER JOIN (2 queries)
Doesn’'t support EXCEPT (1 query)

Doesn’'t support INTERSECT (3 queries)

Running queries from TPC-DS

® Data generator creates CSV files
— Adjust #define for MySQL/MariaDB
® Query generator produces “streams” from templates
— Aset of QueryNNN.tpl files
— Astream is a text file with one instance of each of the 99 queries
— One can add hooks at query start/end
® Queries have a few typos

® There’s no tool to run queries/measure time

— Note that the read queries are a subset of benchmark (TpCX$)

Getting it to run

® A collection of scripts at
https://github.com/spetrunia/tpcds-run-tool

® The goal is a fully-automated run
— MariaDB, MySQL, PostgreSQL

® Because we need to play with settings/options

Test runs done

® The dataset
- Scale=1
- 1.2 GB CSV files
- 6 GB when loaded
® The Queries
- 10..20 “Streams”
® Tuning
— Innodb_buffer _pool=8G (50% RAM)
—shared buffers = 4G (25% RAM)

Test results

Test results

Test results

® ... abitinconclusive — query times varied across my runs (?)
® Time to run one stream = 20 min — 2 hours

® Searching for the source of randomness

- Started to work on full automation

* (did I run ANALYZE? Did | have correct with my.cnf
parameters?)

— Started to look at rngseed in dataset/query generator

JMcriqDB

MariaDB/MySQL

MariaDB 10.2, 10.4, MySQL 8

® Scale=1, 6.1 GB data, 8G buffer pool
® rngseed=1234 for both
® Benchmark takes ~20 min

® Query times are very non-uniform

query72.
query23.

tpl
tpl

query2.tpl

query39.
query78.

tpl
tpl

query4.tpl

query31l
query47
queryll
query74
query2l
query59
query88

.tpl
.tpl
.tpl
.tpl
.tpl
.tpl
.tpl

678,321
80, 025
65,156
63,761
63,473
27,549
24,344
19,156
17,484
16,571
16,212
10,522

9,965

Query#72 dominates

800000

700000

[|

600000

500000

400000

300000

200000

100000 - m
oﬂ_fdﬂ'm.'.“
R R R R R R R R0 R R R QR RS DR

Without Query #72

90000

80000 n

70000

60000

50000

40000

30000

20000 n

[| H [|
10000

o-f- | ﬂ--l.- -f _ ﬁ 'li'ﬁf—

\Q Q\Q\ Q\ ,@@@,@ \Q@v&Q\Q\Q@\Q

ry Cb ‘b ‘o O (D '» O °.> b‘ q 2
S Wiy sV 6 s“yee eé” FFFE LS E L
FFEFFEE NSRRI

A ~\ariaDB

PostgreSQL 11

PostgreSQL 11

There was a “fast” run

Showing results from the last
two runs (both where “slow”)

rngseed=5678 for both
— 121 min

rngseed=1234 (data),
rngseed=4321 (query)
— 145..154 min.

query time, ms

PostgreSQL 11, different rngseed

(analyze has been run for both)

3500000

2500000

B PG1l-seed5678

2000000 @ 4 PGli-sesd1234

1500000
1000000

v
500000 ,

] -]
0 B EEPSEDPEEEPEEEEECEEEEEEY BUDEN EEUTE B rEs FipinnnnEnENEnEEReEe
R T T R PP S R R e P S S s s s s St R S Y
LSRR AR AL
FF oo of ST TSI TEESE

JMcriqDB

Heaviest queries in the run

| query4.tpl

| queryll.tpl
| queryl.tpl

| query74.tpl
| query47.tpl
| query57.tpl
| query81.tpl
| query6.tpl

| query30.tpl
| query39.tpl
| query95.tpl

Execution time varies

Is this a query optimizer issue?

3,628,830
2,004,392
87,981
693,784
624,717
116,570
22,089
27,896
11,214
10, 803
16, 418

Or different constants in a skewed dataset?

3,578,944
2,013,597
1,947, 624
641,696
539, 941
112,472
47, 366
27,009
11,171
10, 702
10, 065

FPRRPRRPORRLRRLROOR

Do we need a “representative
collection of datasets”?

Check N datasets?

JMcriaDB

Compare most heavy gueries

MariaDB PostgreSQL

query_name | QueryTime_ms | | query_name | PG1l1l-seed5678 | PG1l1l-seed1234 | X
------------- S T T T e .
query72.tpl | 678,321 | | query4.tpl | 3,628,830 | 3,578,944 | 1.0139
query23.tpl | 80,025 | | queryll.tpl | 2,004,392 | 2,013,597 | 0.9954
query2.tpl | 65,156 | | queryl.tpl | 87,981 | 1,947,624 | 0.0452
query39.tpl | 63,761 | | query74.tpl | 693,784 | 641,696 | 1.0812
query78.tpl | 63,473 | | query47.tpl | 624,717 | 539,941 | 1.1570
query4.tpl | 27,549 | | query57.tpl | 116,570 | 112,472 | 1.0364
query31.tpl | 24,344 | | query81.tpl | 22,089 | 47,366 | 0.4663
query47.tpl | 19,156 | | query6.tpl | 27,896 | 27,009 | 1.0328
queryll.tpl | 17,484 | | query30.tpl | 11,214 | 11,171 | 1.0038
query74.tpl | 16,571 | | query39.tpl | 10,803 | 10,702 | 1.0094
guery21.tpl | 16,212 | | query95.tpl | 16,418 | 10,065 | 1.6312
guery59.tpl | 10,522 |)

® Some queries are present in both lists, but some are only in one.

® Not clear

Observations about the benchmark

® rngseed on the dataset matters ALOT
- What is a representative set of rngseed values?
® rngseed on query streams — much less
® Hardware?
® Queries are not equal
— Heavy vs lightweight queries

- Is SUM(query_time) an adequate metric?

* Wont see that a fast query got 10x slower

Other observations

Both DBT-3 and TPC-DS workloads are relevant for the optimizer
— Condition selectivities

— Semi-join optimizations

But don’t match the optimizer issues we see
- ORDER BY ... LIMIT optimization

— Long IN-list

Extra: parallel g

Extra — PostgreSQL 11, parallel query?

® Trying on a run with both rngseed=5678:

e Parallel settings
max_parallel_workers_per_gather=8 (the default was 2)

dynamic_shared_memory_type=posix
show max_worker_processes= 8

® Results
- Only saw one core to be occupied

— The run still took 121 min, didin’t see any speedup

Try a parallel query

select
sum(inv_quantity_on_hand*i_current_price)
from
inventory, item
where
i_item_sk=inv_item_sk;

® max_parallel workers per gather=0

QUERY PLAN
Aggregate (cost=301495.25..301495.26 rows=1 width=32)
-> Hash Join (cost=1635.00..213408.54 rows=11744894 width=10)
Hash Cond: (inventory.inv_item_sk = item.i_item_sk)
-> Seq Scan on inventory (cost=0.00..180935.94 rows=11744894 width=8)
-> Hash (cost=1410.00..1410.00 rows=18000 width=10)
-> Seqg Scan on item (cost=0.00..1410.00 rows=18000 width=10)

Try a parallel query

select
sum(inv_quantity_on_hand*i_current_price)
from
inventory, item
where
i_item_sk=inv_item_sk;

® max_parallel workers per gather=8
QUERY PLAN

Finalize Aggregate (cost=125048.98..125048.99 rows=1 width=32)
-> Gather (cost=125048.55..125048.96 rows=4 width=32)
Workers Planned: 4
-> Partial Aggregate (cost=124048.55..124048.56 rows=1 width=32)
-> Parallel Hash Join (cost=1468.23..102026.87 rows=2936224 width=10)
Hash Cond: (inventory.inv_item_sk = item.i_item_sk)
-> Parallel Seq Scan on inventory (cost=0.00..92849.24 rows=2936224 width=8)
-> Parallel Hash (cost=1335.88..1335.88 rows=10588 width=10)
-> Parallel Seq Scan on item (cost=0.00..1335.88 rows=10588 width=10)

JMcriaDB

Try a parallel query

select
sum(inv_quantity_on_hand*i_current_price)
from
inventory, item
where
i_item_sk=inv_item_sk;

® Results
- max_parallel_workers_per_gather=8: 1.0 sec

- max_parallel_workers_per_gather=0: 3.8 sec

® Didn’'t see anything like that in TPC-DS benchmark

Thanks!

	Slide 1
	Slide 2
	WHAT WE’RE FOCUSING ON
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

